首页 > theory > math > > 正文

空间拓扑关系

点击:

平面拓扑关系、三维空间拓扑关系、空间目标之间的拓扑关系推理 空间度量关系 空间计算。

GIS空间数据库的时候,拓扑方面内容笔记

v2-660c6aad53a19b48bfe90c0dcfabf5f2_hd.jpg


平面拓扑关系

Egenhofer和Franzosa在1991年共同撰写的论文Point-Set Topological Spatial Relations,为空间拓扑(九交模型)奠定了重要基础。

依据集合论,作者对于点集拓扑空间定义了以下基本概念,以描述空间对象:

  • Interior(内部) [公式] :对于 [公式] , interior指的是所有包含 [公式] 的开放集合的并集。对于空间对象,可以认为是空间对象的内部。

  • Closure(闭包) [公式] :对于 [公式] , closure指的是所有包含 [公式] 的闭集合的交集。对于空间对象,可以认为是空间对象整体。

  • Boundary(边界) [公式] :对于 [公式] , boundary指的是Y的闭包与Y的补集的闭包的交集,即 [公式] 。对于空间对象,可以认为是空间对象的边界。

简而言之,一个空间对象可定义为由内部+边界构成。

根据以上三条定义可知以下两命题:

  1. [公式] 。即:内部和边界的交集为空。

  2. [公式] 。即:内部和边界的并集为整个对象。

九交模型

在一个平面R2上,两个对象A和B之间的二元拓扑关系要基于以下的相交情况:A的内部(A°)、边界(αA)和外部(A-)与B的内部(B°)、边界(αB)和外部(B-)之间的交。


考虑取值有空(0)和非空(1),可以确定有256种二元拓扑关系。对于嵌在R2中的二维区域,有八个关系是可实现的,并且它们彼此互斥且完全覆盖。这些关系为:相离(disjoint)、相接(meet)、交叠(overlap)、相等(equal)、包含(contain)、在内部(inside)、覆盖(cover)和被覆盖(covered by)。

九交模型

三维空间拓扑关系

  • 点-点空间关系2种:相离、相等;

  • 点-线空间关系3种:相离、相接、包含于;

  • 点-面空间关系3种:相离、相接、包含于;

  • 点-体空间关系3种:相离、相接、包含于;

  • 线-线空间关系7种:相离、相交、交叠、相等、相接、包含于、包含;

  • 线-面空间关系5种:相离、相接、进入、穿越、包含于;

  • 线-体空间关系5种:相离、相接、进入、穿越、包含于;

  • 面-面空间关系10种:相离、相接、交叠、相等、包含于、包含、覆盖、被覆盖、穿越、被穿越;

  • 面-体空间关系8种:相离、相接、交叠、进入、包含于、包含、穿越、被穿越;

  • 体-体空间关系8种:相离、相接、进入、相等、包含于、包含、穿越、被穿越。

基本空间拓扑关系的计算

点与直线的关系计算

直线方程:

Ax+By+C=0

A=y1-y2,

B=x1-x2,

C=y2x1-y1x2

令S=Axi+Byi+C

  • 当S<0 点在顺时针方向上;

  • 当S=0 点在直线上;

  • 当S<0 点在逆指针方向上。

两条直线关系的计算

直线方程:

Ax+By+C=0

Ex+Fy+G=0

当FA-EB=0时,两条直线的交点不存在;否则,交点坐标为:

xi=(GB-FC)/(FA-EB)

yi=(CE-AG)/(FA-EB)


空间目标之间的拓扑关系推理

两条线的直线段之间基本空间拓扑关系的推理

点与其他类型空间目标之间的拓扑关系决策树

线与面之间的全域空间拓扑关系决策树

面与面之间的全域空间拓扑关系基本类型的决策树


空间度量关系

度量关系是在欧氏空间(Euclidean Space)(Blumenthal,1970)和度量空间(Metric Space)(Dhage,1992)上进行的操作,它是一切空间数据定量化的基础。它包含长度、周长、面积、距离等定量的度量关系,其中最主要的度量空间关系是空间对象之间的距离关系。

欧几里德距离定义如下(Kolountzakis and Kutulakos,1992):

曼哈顿距离是两点在南北方向上的距离加在东西方向上的距离(Wu et al.,1987),即:

  • 点与点之间距离&点与线之间距离:dPL(P,L)=min{d1,d2,…dn}

  • 线与线之间的距离:d(L1,L2)=min{d(P1,P2)|P1∈L1,P2 ∈L2}

  • 点与面之间的距离:

    • “中心距离”是点P与面A中几何中心或者重心之间的距离,

    • “最小距离”是指点P与面A中所有点之间距离的最小值,

    • “最大距离”是指点P与面A中所有点之间距离的最大值。

  • 面与面之间的距离

    • “中心距离”是指两个面状物体的质心之间的距离;

    • “最小距离”是指面A1中的点P1与A2中的点P2之间的距离的最小值;

    • “最大距离”是指面A1中的点P1与A2中的点P2之间的距离的最大值。

    空间顺序关系及描述方法

    锥形模型

    每区域赋予东、南、西和北,为得到更精确的方向关系可对其再进行细分得8或16方向。

    最小外接矩形模型


    该模型通过延伸目标的MBR的边,将空间划分为9个区域,分别表示为北、东北、东、东南、南、西南、西、西北和目标MBR所在的中心方向。

    Freksa-Zimmermann模型

    以直线段为参考的定性空间方向模型:以直线为空间参考目标,把二维空间分解为15个方向区域。

    以点为参考目标的基本空间方向

    点A与点B的空间方向关系可以用向量AB与正北方向的夹角(顺时针)来描述。

    • (a) 点A与点B之间的空间方向关系。

    • (b)点A与直线BC之间的空间方向关系,以角平分线L的方位表示。

    • (c) 用两条直线的中点代表代表其方位。

    以直线为参考目标的基本空间方向

    • (a) 直线AB和直线CD的方向可用向量EF(E和F分别为两直线的中点)来描述。

    • (b)直线AB和点C的方向关系。

    • (c) 划分直线段AB的方向片,点C相对直线AB的关系可描述为点C在直线AB的哪个方向片中。

    • (d)直线AB和直线CD的方向可用向量EF(E和F分别为两直线的中点)来描述,或用向量ED和向量EC来定义。

    点与线或面之间的空间方向关系

    • (a) 方向线PS和PE定义了点A与线L之间的全域空间方向关系,点A与P1、P2、P3(中点)的连线定义了点A与不同直线段的局域空间方向关系。

    • (b)方向线PS和PE重和,说明点A被线L包围,这是全域空间方向关系,点A与P1、P2、P3、P4(中点)的连线定义了点A与不同直线段的局域空间方向关系。

    • (c)方向线PS和PE定义了点A与面B之间的全域空间方向关系,用方向线P1、P2把面域B分为3部分,每部分可以用该锥形的角平分线描述方向关系,这3部分的面积与面积B的总面积之比分别为B1、B2、B3。也可以用该锥形的每个角平分线在面内的长度与角平分线在面内的总长度之比L1、L2、L3来表示。

    • (d)方向线PS和PE重和,说明点A被面B包围,这是全域空间方向关系,面域不同和点A之间的局域空间方向关系描述方法与(c)同。

    线与点、线或面之间的空间方向计算与描述

    • (a) 线ABCD与点E之间的全域空间方向关系为“相同”,直线段AB与点E之间的局域空间方向关系为“西”。

    • (b) 反映线与线之间的全域空间方向关系,直线段AB与线L2的每条直线段和线的任意子集之间都有局域空间方向关系。

    • (c) 线与面的全域空间方向关系和局域空间方向关系均可象(b)一样计算和描述。

    面与点、线、面之间的空间方向关系计算与描述

    • (a) 面P与点C之间的全域空间方向关系为“相同”,面P的直线AB与点C之间的局域空间方向关系为“北”。

    • (b) 面P与直线EFG之间的全域空间方向关系和局域空间方向关系如图所示,前者为“东”、“相同”和“南”,而后者为“东”。

    • (c) 把区域栅格化,判断子区域与源目标的全域空间方向关系和局域空间方向关系。